Pathogenic mechanism of a human mitochondrial tRNAPhe mutation associated with myoclonic epilepsy with ragged red fibers syndrome.
نویسندگان
چکیده
Human mitochondrial tRNA (hmt-tRNA) mutations are associated with a variety of diseases including mitochondrial myopathies, diabetes, encephalopathies, and deafness. Because the current understanding of the precise molecular mechanisms of these mutations is limited, there is no efficient method to treat their associated mitochondrial diseases. Here, we use a variety of known mutations in hmt-tRNA(Phe) to investigate the mechanisms that lead to malfunctions. We tested the impact of hmt-tRNA(Phe) mutations on aminoacylation, structure, and translation elongation-factor binding. The majority of the mutants were pleiotropic, exhibiting defects in aminoacylation, global structure, and elongation-factor binding. One notable exception was the G34A anticodon mutation of hmt-tRNA(Phe) (mitochondrial DNA mutation G611A), which is associated with MERRF (myoclonic epilepsy with ragged red fibers). In vitro, the G34A mutation decreases aminoacylation activity by 100-fold, but does not affect global folding or recognition by elongation factor. Furthermore, G34A hmt-tRNA(Phe) does not undergo adenosine-to-inosine (A-to-I) editing, ruling out miscoding as a possible mechanism for mitochondrial malfunction. To improve the aminoacylation state of the mutant tRNA, we modified the tRNA binding domain of the nucleus-encoded human mitochondrial phenylalanyl-tRNA synthetase, which aminoacylates hmt-tRNA(Phe) with cognate phenylalanine. This variant enzyme displayed significantly improved aminoacylation efficiency for the G34A mutant, suggesting a general strategy to treat certain classes of mitochondrial diseases by modification of the corresponding nuclear gene.
منابع مشابه
A new mitochondrial transfer RNAPro gene mutation associated with myoclonic epilepsy with ragged-red fibers and other neurological features.
BACKGROUND Pathogenic mutations of the human mitochondrial genome are associated with well-characterized, progressive neurological syndromes, with mutations in the transfer RNA genes being particularly prominent. OBJECTIVE To describe a novel mitochondrial transfer RNA(Pro) gene mutation in a woman with a myoclonic epilepsy with ragged-red fibers-like disease. Design, Setting, and Patient Cas...
متن کاملNovel mitochondrial DNA ND5 mutation in a patient with clinical features of MELAS and MERRF.
BACKGROUND The mitochondrial DNA gene encoding subunit 5 of complex I (ND5) has turned out to be a hot spot for mutations associated with mitochondrial encephalomyopathy with lactic acidosis and strokelike episodes (MELAS) and various overlap syndromes. OBJECTIVE To describe a novel mutation in the ND5 gene in a young man man with an overlap syndrome of MELAS and myoclonus epilepsy with ragge...
متن کاملMutation in the mitochondrial tRNAIle gene causes progressive myoclonus epilepsy
PURPOSE The group of the rare progressive myoclonic epilepsies (PME) include a wide spectrum of mitochondrial and metabolic diseases. In juvenile and adult ages, MERRF (myoclonic epilepsy with ragged red fibres) is the most common form. The underlying genetic defect in most patients with the syndrome of MERRF is a mutation in the tRNALys gene, but mutations were also detected in the tRNAPhe gen...
متن کاملMitoTALEN: A General Approach to Reduce Mutant mtDNA Loads and Restore Oxidative Phosphorylation Function in Mitochondrial Diseases.
We have designed mitochondrially targeted transcription activator-like effector nucleases or mitoTALENs to cleave specific sequences in the mitochondrial DNA (mtDNA) with the goal of eliminating mtDNA carrying pathogenic point mutations. To test the generality of the approach, we designed mitoTALENs to target two relatively common pathogenic mtDNA point mutations associated with mitochondrial d...
متن کاملClinical and brain MR imaging features focusing on the brain stem and cerebellum in patients with myoclonic epilepsy with ragged-red fibers due to mitochondrial A8344G mutation.
SUMMARY We report 3 patients with myoclonic epilepsy with ragged-red fibers (MERRF) diagnosed by mitochondrial A8344G mutation. Cerebellar ataxia was the first symptom in all patients. Conventional brain MR imaging showed atrophy of the superior cerebellar peduncles and the cerebellum in all patients and brain stem atrophy in 2 patients. In diffusion tensor analysis, fractional anisotropy of th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 39 شماره
صفحات -
تاریخ انتشار 2007